3. MOBILITY & INFRASTRUCTURE

3.1 INTRODUCTION
This Chapter summarizes issues and strategies for downtown access and improvements to the circulation network (Section 3.1), public transit (Section 3.2), parking (Section 3.3), and infrastructure (Section 3.4). Each section includes a discussion of existing conditions as well as strategies and potential solutions to address major issues. The transportation assessment focuses on the following four transportation components most relevant to the downtown:

Street Network Assessment. This includes a review of the current and future (planned) street network and provides multi-modal recommendations to inform the Street Design components of the Specific Plan (Section 8.0 of Chapter 5 Development Code).

Traffic Assessment. This assessment provides a summary of current traffic volumes as well as a forecast for 2030 traffic volumes based on prior traffic modeling. It also includes an analysis of level of service at peak hours for five key intersections in the Plan Area.

Transit Assessment. This assessment summarizes current transit service and access to transit. It includes recommendations for the proposed intermodal station (discussed in Chapter 2, Vision), with details regarding potential site access needs for buses serving the Amtrak corridor. This section also identifies potential opportunities for shuttle service, such as a “park once” shuttle or neighborhood feeder shuttle.

Parking Assessment. This includes an analysis of current parking supply and utilization, and provides recommendations for parking policy and parking management strategies.

3.2 ACCESS AND CIRCULATION NETWORK

EXISTING ACCESS AND CIRCULATION NETWORK

Street Network
Figure 3.1 shows the existing street network providing access to Downtown Soledad. Arterial streets are intended to provide the primary access routes for motor vehicles to and from Downtown Soledad, including the critical connections to and from the U.S. Highway 101 on- and off-ramps. There are three arterials serving the Specific Plan area: Front Street, East Street, and Main Street.

Proposed State Route 146 By-pass
The City has been exploring options for a by-pass route to State Route (SR) 146, which runs through the Central Business District. SR 146 currently carries 13,900 vehicles per day during the peak month, and trucks represent approximately 15 percent of the daily traffic. Although the by-pass would divert this truck traffic away from residential neighborhoods, it will also divert vehicle traffic off of Front Street and away from downtown, and may be detrimental to the economic well-being of businesses along Front Street. This Plan recommends any decisions affecting...
grid of straight streets and modestly scaled blocks allowing for relatively direct routes. Existing Class II bicycle lanes are shown in Figure 3.2.

Space is available to stripe a bicycle lane in one direction on blocks on which there is angled parking on one side only. Additionally, angled parking could be converted to “back-in” angled parking to improve visibility and safety for cyclists (see Section 3.3 (Parking) for further detail).

It will be important, if and when the rail properties southwest of downtown are redeveloped, that provisions be made for cyclists.

Bicycle Access

The downtown features a dense network of Class II bicycle lanes that cover nearly every block; generally, only those streets that are unusually narrow or blocks on which there is angled parking lack bicycle lanes. Downtown Soledad features flat terrain, relatively little traffic, and a regular access to downtown be carefully considered in all large-scale citywide access improvement projects. The SR 146 by-pass is discussed in Action 19, Policy 19.1, in Chapter 4 (Implementation).
Site-Specific Access

Union Pacific Site

Future development in the Specific Plan area includes building out the 12-acre Union Pacific site (see discussion on the Railroad District in Chapter 2 (Vision) for details on the proposed development plan). While this area will serve as prime space for downtown expansion, with high visibility from U.S. 101, providing vehicular access to the site would face a number of challenges. The UP tracks paralleling Front Street along the southwestern border of downtown Soledad act as a barrier for motorists, cyclists and pedestrians, separating downtown from the UP-owned site between the tracks and U.S. Highway 101. Only two points exist at which the tracks can legally be crossed within the City of Soledad: at Front Street where it curves to the south, east of downtown toward U.S. Highway 101, and at the southwest end of Main Street downtown. The first crossing is grade-separated: Front Street is below grade, with very narrow (approximately three-foot) sidewalks. The second crossing, however, is at grade, unpaved and uncontrolled (with only a sign, and no gates), and provides access only to a private business. In the future if the proposed project does not include an over or underpass for vehicular railroad crossing at this site, the emergency access would need to be relocated north or south of the station.

Pedestrian/Bicycle Access

Pedestrian Bridge: The Main Street crossing is adjacent to the planned Front Street rail station. Conceptual designs developed by the City for the station (see Appendix E) show the station building at the end of Main, in the extension of the Main Street right-of-way that crosses the tracks. The “Option 1” design for the station shown in the conceptual design includes a pedestrian overpass of the eastern set of tracks, enabling access to a central platform between the tracks. If such a facility were extended over the western tracks, it could provide direct access between downtown and the redevelopment area for pedestrians and cyclists. A similar example from an Amtrak station in Emeryville, in the San Francisco Bay Area, is shown in Figure 3.3. Additionally, this concept is shown in the illustration of the proposed Intermodal Transit Station (Figure 3.4). The design for the Intermodal Transit Station is also shown in Figure 3.4, Figure 3.8, and Figure 3.9.

The cost of such a structure could be several million dollars (to comply with the Americans with Disabilities Act, it would either have to include elevators, as shown in the station concept plan, or very long ramps on each end), and it would not provide direct vehicular access between downtown and the Railroad District (see Chapter 2 (Vision) for details on the Railroad District). However, the crossing might be eligible for grant funding as part of the rail station project, and the additional cost to increase the size of an already-planned structure would be marginal.

Improved At-Grade Crossing: An improved at-grade crossing, might be relatively inexpensive. However, the California Public Utilities Commission (CPUC), which regulates railroad crossings in California, rarely approves new public at-grade crossings due to safety concerns and impacts on railroad operations. Were the City to pursue this option, an extensive permitting process would be required.
Figure 3.5 Optional Street Alignments for New Vehicular Access to the Railroad Parcels. **Option 1:** Build a bridge over Front Street. **Option 2:** Build an automobile underpass extending from Kidder Street in a u-shape. **Option 3:** Build an underpass from the railroad parcels to the agricultural fields northeast of the tracks, eventually emerging with San Vicente Street.
Vehicular Access

Option 1 - Bridge Crossing: Chaparral Street to the northeast could be extended northwest to the redevelopment area. This would require a partial taking of an industrial site, and removal of detached mobile homes parked along its north side to widen the street. Moreover, connecting Chaparral to Front Street would likely require a new overpass of Front Street, connecting to Nestles Road.

A bridge over Front Street would need a 50 - 60 foot ROW for the approach to the bridge, but the actual bridge can be closer to 35 or 40 feet. The City may need to retain a portion of parcel number 022-224-001 as City ROW to accommodate for any road curve that may need to occur, and retain all of parcel number 022-223-029 as City ROW. The City may also need to work with the property owner of parcel number 022-223-001 to retain a good portion of the north corner of the property. The details of the bridge alignment would need to be determined by an engineer, and the project could be relatively expensive. See Figure 3.5.

Option 2 - Kidder Street Underpass: Kidder Street could be extended across Front Street into an underpass to the Union Pacific site. This concept is shown in Figure 3.5 and also illustrated in the Intermodal Transit Station design concept, shown in Figure 3.3 and Figure 3.9.

Option 3 - Northeast Underpass: An underpass could be built at the northwest end of the City, running parallel to U.S. Highway 101 in the Union Pacific site, curving east to cross under Front Street, and emerging in the agricultural fields, eventually meeting up with San Vicente Street. See Figure 3.5.

Other: Extend Santa Lucia Drive, which intersects with the U.S. Highway 101 off-ramp just west of Front Street, northwest, which would result in minimal impacts (no structures would have to be removed). However, Santa Lucia is a relatively narrow, residential street (it provides internal circulation for the Santa Elena Mobile Home Park), it intersects with an off-ramp, and visibility is poor – motorists approaching the intersection from the highway,
potentially at high speed, cannot see the intersection until the last moment. If traffic on the street were to be increased substantially, a Caltrans design exception might be required, and obtaining such an exception can be a difficult process.

Proposed Hotel/Restaurant Site
The preliminary development plan for the Gateway Hotel site shows a parking lot entrance from Front Street approximately 280 feet west of the Nestles Road / U.S. Highway 101 off-ramp intersection. This curb cut would be located at the approximate point where the Front Street underpass of the Union Pacific returns to level grade.

This design is problematic (and a Chaparral connection to Front at this location would be equally problematic) for reasons of visibility and safety: to increase visibility for motorists emerging from the underpass (potentially at relatively high speeds), the intersection would likely have to be signal-controlled, and the resulting block between this intersection and the Nestles Road / U.S. Highway 101 off-ramp intersection would be very short, less than 300 feet.

Front Street/ U.S. Highway 101 Offramp
It may be possible to incorporate an extension of Chaparral or Santa Lucia into a roundabout at the site of the existing intersection of Front Street, Nestles Road and the U.S. Highway 101 off-ramp. Modern roundabouts are able to accommodate such “five-legged” intersections (see Figure 3.6); however, the U.S. Highway 101 off-ramp would have to be realigned, and the gateway hotel site would be impacted.

Whether it featured four or five “legs,” a roundabout at this location appears viable. The intersection was only recently signalized (it was formerly stop sign-controlled for Nestles/ the U.S. Highway 101 off-ramp only), and according to data collected for the Highway 146 Bypass Study, peak-hour volumes are relatively modest: approximately 450 vehicles in each direction on Front Street during the PM peak hour, and many fewer vehicles on Nestles and the off-ramp.

A two-lane modern roundabout can accommodate this level of traffic with minimal delay and maintain a level of service B, as determined by traffic models based on General Plan build out scenarios. To avoid unnecessary costs and over building, it will be necessary to revisit these traffic scenarios at time of construction, as the models may have over anticipated future development.

Figure 3.6 Sample Design of a Modern Roundabout
3.3 PUBLIC TRANSIT

EXISTING PUBLIC TRANSIT SERVICE

Bus Service

Regional

Fixed-route service currently consists of a single bus route, MST Route 23, which provides express connections to Gonzales, Chualar, and Salinas to the north and Greenfield and King City to the south. Route 23 operates every one-to-two hours on weekdays, and every one-to-three hours on weekends. In central Soledad, it operates from north to south via Front, Benito, Monterey, and East Streets, and follows the reverse path in the opposite direction. It makes stops on Monterey at East and on Front at San Vicente Road, as well as at the Soledad Mission Center southeast of downtown. All four central Soledad stops (two in each direction) feature shelters.

South County Area Service Analysis completed by MST in 2010 recommended changes to Line 23 including extended service hours (primarily to allow users to attend evening classes at Hartnell College), improved amenities at stops, and truncation of mid-day service at Gonzales, to be replaced in the South County with new deviated fixed-route service (using flag stops in Soledad). The Analysis also recommended reduced-cost transfers between Route 23 and local dial-a-ride service.

Local

As of July 2, 2012 Monterey-Salinas Transit (MST) replaced the local taxi service previously provided by the City of Soledad. MST offers on call service throughout the City, and also allows individuals to connect to other South County cities through MST’s regional route network, via Line 23 Salinas-King City and Line 82 Fort Hunter Liggett-Salinas Express. Passengers can make daily or weekly standing appointments for regular pick-ups for work, school or other travel needs.

Seniors and persons with disabilities receive a discount on Soledad Taxi fares. Additionally, MST provides ADA complementary paratransit service within three-quarters of a mile of Route 23.

Transit Access

Transit stops should be located within approximately one-third mile of potential users. However, as shown in Figure L.1, the current, regular scheduled bus service in Soledad is limited to just a few stop locations. As a result, while transit access is provided to downtown, such access does not extend to Soledad’s residential neighborhoods.
Passenger Rail

Through the Coast Rail Coordinating Council, the City is seeking to restore Coast Daylight passenger rail service between San Francisco and San Luis Obispo (with either connections to or service continuing through Los Angeles). Amtrak’s Coast Starlight service currently passes through Soledad, but does not stop in the City. The 2000 Coast Daylight Implementation Plan identified Soledad as a potential station stop, and working with the Union Pacific Railroad (UPRR, or UP), the City has developed a conceptual plan for an intermodal transit station on the south side of Front Street.

It should be noted that while this level of transit service (two trains per day, and relatively infrequent bus connections) is not generally considered supportive of transit-oriented development, much of the Front Street retail district and Union Pacific-owned redevelopment sites southwest of the UP right-of-way are within a short walk of the station site.

Legend (for Figure 3.7, 3.8 & 3.9)

a. Vehicular undercrossing
b. Pedestrian undercrossing stairs
c. Alternative pedestrian bridge
d. Hotel and public plaza
e. Potential commercial uses and plaza
f. Amtrak platform
g. “Kiss & Ride” and/or bus, shuttle, or taxicab loading area at Station Plaza
h. Public green and new commercial buildings
i. Potential flower fields
j. Parking for new commercial buildings

Figure 3.7 Perspective model of downtown rail crossing concept, facing northwest
Figure 3.8 Perspective model of downtown rail crossing concept, close-up of pedestrian crossing, facing northwest

Figure 3.9 Perspective model of downtown rail crossing concept, facing west
PUBLIC TRANSIT SERVICE STRATEGIES
This section lists recommendations for expanding and diversifying public transit service in the City. Recommendations listed here have been converted into specific policies and actions in Chapter 4, (Implementation). Chapter 4, (Implementation) lists funding sources, phasing, and responsible parties for implementing recommended policies and actions.

Intermodal Station
The City has developed a conceptual plan for a transit station on Front Street, at the end of Main Street, adjacent to an existing park-and-ride lot. The station is envisioned as a multimodal facility featuring off-street, on-site bus stops. A design concept for the station is also shown in Figure 3.7, Figure 3.8, and Figure 3.9. The design concept proposes a number of alternatives for pedestrian and vehicular rail crossings. These concepts are discussed in Section 3.2 (Access and Circulation Network). Access for additional transit types are discussed in this section.

Route 23 Realignment
Were MST Route 23 to serve the station site, the most logical course of action would be to realign it so that it operated along Front Street between Benito and East Streets, with stops at the rail station (ideally, southbound buses would stop on the street adjacent to the station, so that they would not have to pull into and out of the station site); cars backing in or out of angled parking spaces on Front would slow operations, but time would be saved by a more direct alignment.

Connection Times
The City would need to work with MST to ensure bus arrivals and departures were timed to optimize connections to Coast Daylight service, including trains as well as any Amtrak buses that served the site (were Soledad not selected as a station site, the City would want to work with MST to ensure buses serving Soledad made timed connections at the nearest station). The Coast Daylight Implementation Plan recommended an operating plan consisting of one northbound and one southbound train per day, scheduled to depart Los Angeles and San Francisco at 8 a.m. and arrive at the end of the line at 7 p.m. This suggests southbound arrivals in Soledad in the late morning, and northbound in the mid-afternoon.

Amtrak Bus Service
Amtrak’s Coast Starlight service is augmented with Amtrak bus service that generally serves each Amtrak station with several buses per day in each direction. The design of the proposed Intermodal Station should include accommodations for Amtrak bus stops and passenger boarding areas. By providing accommodations to serve Amtrak buses, the level of transit service (while still relatively infrequent) will be somewhat more suitable for facilitating transit-oriented development (in comparison with rail service alone).

Figure 3.11 Existing Transit Service and Walking Distance to Bus Stops
Additional Transit Access Strategies

Providing local transit access to the proposed Intermodal Station would require additional local bus service. This could include one or more of the following strategies:

Shuttle

Figure 3.11 shows a potential route alignment for a City shuttle service, including conceptual stop locations. With such an alignment, most if not all of Soledad residences and businesses would be located within one-third mile of a regular transit stop.

Funding could be identified through a combination of grants, developer contributions, and/or local assessments. Operations could be carried out by MST, the City, or a private shuttle operator. Estimated operating cost would be $300,000 to $700,000 annually (varies depending on the hours of operation).

Monterey Street “bus priority corridor”

Monterey Street could be designated as a “bus priority corridor.” The street could remain in its current configuration (with two travel lanes, two bicycle lanes, and current on-street parking configuration) and become the designated north/south transit route for local and regional bus service. Currently local MST bus service uses Monterey Street, rather than Front Street, in part to avoid conflicts with vehicles accessing diagonal on-street parking. Diagonal on-street parking should not be installed on this or other designated “bus priority corridors”.

3.4 PARKING

EXISTING CONDITIONS

Parking Supply

Nelson\Nygaard conducted a parking supply and utilization count in Downtown Soledad on Tuesday, October 18, 2011. The study area was bounded by Front Street and the railroad tracks to the southwest, Monterey Street to the northeast, West Street to the northwest, and East Street to the southeast (see Figure 3.12 for a map of the study area). A total of 1,252 parking spaces are located within the study area:

- 488 on-street parking spaces; and
- 764 off-street parking spaces.

The parking supply includes accessible on-street and off-street, public and private spaces. Spaces obstructed by construction or physical barriers such as fences were excluded from the counts.

Parking Utilization

To evaluate parking utilization, parking occupancy counts were taken at 10:00 a.m., 12:00 p.m. and 2:00 p.m. on October 18, 2011.

The counts (summarized in Table 3.1 and Table 3.2) show that at the busiest time (2:00 p.m.), just 25 percent of the area’s parking supply was occupied, with on- and off-street spaces showing different occupancy rates (30 percent and 22 percent, respectively). At this peak hour, 936 of the 1,252 spaces in the parking supply were vacant.

The utilization rates are far below target rates. Target occupancy rates of 85 percent and 90 percent are effective industry standards for analyzing the demand for on- and off-street spaces, respectively. In other words, maintaining 15 percent and 10 percent vacancy rates for corresponding on- and off-street spaces help to ensure an “effective parking supply.” At these standard occupancy levels roughly one space per block is available, making searching or “cruising” for parking unnecessary, and off-street lots maintain adequate maneuverability. Utilization rates much below these targets indicate a diminished economic return on investment in parking facilities.

Based on the occupancy data for the study area, the amount of retail/commercial activity or jobs in the study area does not result in dramatic overall fluctuations of parking demand. Demand steadily increases from 10:00 a.m. to 12:00 p.m. and again from 12:00 p.m. to 2:00 p.m. as shown in Table 3.2.

Figure 3.12 is a map of the peak hour occupancy (2:00 p.m.). The map shows the occupancy level for each individual block face and off-street lots during the peak hour of parking demand. The map reveals that there are some limited “pockets” of higher demand on a few blocks and in some lots in the study area. On Soledad Street, the Acamparo Bakery lot has two parking spaces that were

| TABLE 3.1 PARKING OCCUPANCY AT PEAK TIME (2:00 P.M.) |
|-------------------------------|-----------------|-----------------|
| EXISTING PARKING SPACES | OCCUPANCY AT PEAK TIME |
| Off-street | 764 | 22% |
| On-street | 488 | 30% |
| Total | 1,252 | 25% |

| TABLE 3.2 PERCENT OF OCCUPIED PARKING SUPPLY ON TUESDAY, OCT. 18, 2011 |
|-------------------|-----------------|-----------------|
| LOCATION | 10:00 A.M. | 12:00 P.M. | 2:00 P.M. |
| Off-street | 18% | 19% | 22% |
| On-street | 24% | 29% | 30% |
| Total | 20% | 23% | 25% |
occupied during each of the survey times. The lot between Main Street and Soledad Street (behind the retail stores along Front Street between Main and Soledad) also had slightly higher demand. On-street parking occupancy was less than 74 percent in the areas adjacent to these lots, however.

The on-street parking along Kidder Street (near the Post Office) and Front Street between Kidder and East Street (between Valley Foods and Clinica de Salud del Valle) also had higher occupancy rates. Although on-street parking occupancies were higher in this area, off-street occupancy in adjacent lots remained low. Parking demand remains low for the study area as a whole.

Existing Parking Demand Ratios
Utilizing the data gathered during the parking inventory as well as an inventory of existing land uses, existing parking supply and demand ratios were calculated.

A. Built Parking Spaces to Building Area Ratio. This represents the total number of existing parking spaces correlated to total existing building square footage (occupied or vacant) within the study area. There is approximately 297,290 square feet of built area in the study area. Approximately 4.21 parking spaces per 1,000 square feet of building area have been developed/provided within the study area (combining the on- and off-street parking supplies).

B. Combined Peak Demand to Occupied Building Area Ratio. This represents peak hour occupancy within the six block study area combining the on- and off-street supply. As such, actual parked vehicles were correlated with actual occupied building area (approximately 260,188 square feet). Current peak hour demand stands at a ratio of approximately 1.21 parking spaces per 1,000 square feet of occupied building area.

Table 3.3 illustrates these ratios and breaks out the data by block, which reveals that Block A-6 (which contains a grocery store, post office, credit union, and health clinic) has the highest peak demand ratio (3.18 per 1,000 square feet), while Blocks A-3 (70) and A-4 (76) have considerably lower demand ratios during the peak period.

If in the future parking were provided at the rate of actual demand absorption (1.21), overall peak hour occupancies would near 100 percent only if parking remained free and nearly 310,000 square feet of new development were constructed in the area. Put another way, there are currently 260,188 square feet of occupied built space resulting in 316 occupied parking spaces. In order to fill the remaining 936 vacant spaces in the area, up to 310,000 additional square feet could be added without any new parking being constructed. If any level of parking pricing were to be instituted in the future, peak hour occupancies would be less than 100 percent, particularly if prices were set to recommended levels to ensure a 15 percent vacancy rate.
The surplus of parking allows for future development to make use of existing spaces prior to the construction of new parking. As such, there should be no more than two parking spaces per 1,000 square feet of building space present in the downtown as it builds out.

Table 3.4 provides a summary comparison of built supply to actual demand for other cities. Downtown Soledad is the highest of selected cities in relation to actual amount of parking built to land use. However, Soledad has one of the lowest demand ratios, resulting in a large gap between the level of parking supplied and what is actually needed. Like many American cities, downtown Soledad is currently building more parking than demand indicates.

PARKING IMPROVEMENTS

This section provides potential strategies and improvements to address future parking needs in the Plan Area. Strategies described here are included as policies or actions in Chapter 4 (Implementation) along with appropriate funding sources, phasing, and responsible parties.

Parking Management

Historically, “solving the parking problem” almost always meant increasing supply. Unfortunately, constantly increasing parking supply simply encourages more auto use, as people are encouraged to drive to places that offer “plenty of free parking.” While providing adequate parking is still important, it is only one tool available for managing both demand and supply. The goal of “parking demand management” is to provide the optimal amount of parking to meet parking needs while reducing traffic congestion, encouraging alternate transportation and accommodating new development and a variety of land uses.

<table>
<thead>
<tr>
<th>CITY</th>
<th>MINIMUM REQUIREMENT / 1,000 SF OR ACTUAL BUILT SUPPLY</th>
<th>ACTUAL DEMAND / 1,000 SF</th>
<th>GAP BETWEEN PARKING BUILT AND ACTUAL PARKING DEMAND (FOR EVERY 1,000 SF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hood River, OR</td>
<td>1.54</td>
<td>1.23</td>
<td>0.31</td>
</tr>
<tr>
<td>Oxnard, CA</td>
<td>1.70</td>
<td>0.98</td>
<td>0.72</td>
</tr>
<tr>
<td>Corvallis, OR</td>
<td>2.00</td>
<td>1.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Sacramento, CA</td>
<td>2.00</td>
<td>1.60</td>
<td>0.40</td>
</tr>
<tr>
<td>Monterey, CA</td>
<td>2.14</td>
<td>1.20</td>
<td>0.94</td>
</tr>
<tr>
<td>Seattle, WA (SLU)</td>
<td>2.50</td>
<td>1.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Kirkland, WA</td>
<td>2.50</td>
<td>1.98</td>
<td>0.52</td>
</tr>
<tr>
<td>Palo Alto, CA</td>
<td>2.50</td>
<td>1.90</td>
<td>0.60</td>
</tr>
<tr>
<td>Santa Monica</td>
<td>2.80</td>
<td>1.80</td>
<td>1.00</td>
</tr>
<tr>
<td>Ventura, CA (Westside)</td>
<td>2.87</td>
<td>1.26</td>
<td>1.61</td>
</tr>
<tr>
<td>Chico, CA</td>
<td>3.00</td>
<td>1.70</td>
<td>1.30</td>
</tr>
<tr>
<td>Hillsboro, OR</td>
<td>3.00</td>
<td>1.64</td>
<td>1.36</td>
</tr>
<tr>
<td>Bend, OR</td>
<td>3.00</td>
<td>1.80</td>
<td>1.20</td>
</tr>
<tr>
<td>Salem, OR</td>
<td>3.15</td>
<td>2.04</td>
<td>1.11</td>
</tr>
<tr>
<td>Redmond, WA</td>
<td>4.10</td>
<td>2.71</td>
<td>1.39</td>
</tr>
<tr>
<td>Beaverton, OR</td>
<td>4.15</td>
<td>1.85</td>
<td>2.30</td>
</tr>
<tr>
<td>Soledad, CA</td>
<td>4.21</td>
<td>1.21</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Managing parking has been shown to be the single most effective tool for managing congestion, even when densities are relatively low and major investments in other travel modes have not been made. Parking management can also have a significant impact on commute mode choice, which translates directly to reductions in auto congestion and improved livability of commercial districts and adjacent neighborhoods.

| TABLE 3.3 EXISTING BUILDING SQUARE FOOTAGE, PARKING SUPPLY AND PARKING DEMAND|
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| BLOCK | TOTAL BUILDING AREA (SF) | OCCUPIED BUILDING AREA (SF) | OFF-STREET SPACES | ON-STREET SPACES | TOTAL PARKING SUPPLY | BUILT RATIO OF PARKING (PER 1,000 SF) | TOTAL OCCUPIED OFF-STREET SPACES AT PEAK | TOTAL OCCUPIED ON-STREET SPACES AT PEAK | TOTAL OCCUPIED SPACES AT PEAK | ACTUAL RATIO OF PARKING DEMAND (PER 1,000 SF) |
| A-1 | 31,429 | 31,429 | 69 | 48 | 117 | 3.72 | 32 | 11 | 43 | 1.37 |
| A-2 | 24,993 | 19,729 | 183 | 74 | 257 | 10.30 | 9 | 24 | 33 | 1.67 |
| A-3 | 75,123 | 67,082 | 155 | 101 | 256 | 3.41 | 20 | 27 | 47 | 0.70 |
| A-4 | 71,507 | 65,890 | 139 | 97 | 236 | 3.31 | 19 | 31 | 50 | 0.76 |
| A-5 | 47,787 | 47,787 | 107 | 80 | 187 | 3.91 | 31 | 22 | 53 | 1.11 |
| A-6 | 46,449 | 28,270 | 110 | 88 | 198 | 4.26 | 52 | 38 | 90 | 3.18 |
| STUDY AREA | 297,290 | 260,188 | 763 | 488 | 1,252 | 4.21 | 163 | 153 | 316 | 1.21 |

Source: Lisa Wise Consulting, Inc. and Nelson,Nygaard
Proposed Phasing of New Surface Lots and Structures

- Existing Surface Parking Lots
- Phase 1: Proposed New Shared Surface Parking Lots
- Phase 2: Potential Locations for New Parking Structures, as Needed

Figure 3.13 Map of Proposed Parking Management Plan

Proposed Phasing of Additional Angled Parking

- Existing Bike Lanes
- Existing Angled Parking
- Proposed Angled Parking - Phase I
- Proposed Angled Parking - Phase II

Figure 3.14 Map of Existing Bike Lanes and Proposed Phasing for New Angled Parking
As Downtown Soledad continues to grow and evolve, its parking needs will change as well. A Parking Management Plan is outlined in Chapter 4 (Implementation) in the form of programs and actions with specific funding sources, phasing recommendations and details on responsible parties. The Parking Management Plan proposes an approach that utilizes policies and programs that will enable more efficient utilization of existing supply, while alleviating parking congestion in certain areas. A key strategy for the City will be to make the most efficient use of all public and private parking facilities and encourage the use of viable alternative mode options before constructing new parking. As part of this, the City should pursue a “park once” strategy for downtown that manages the entire parking supply as part of an integrated system. The map in Figure 3.13 proposes ideal locations for new shared parking locations including surface parking lots and parking structures, to be developed in phases and as needed.

Angled Parking

Angled parking can provide a significant increase in parking spaces at little cost to the City. Most of the right-of-ways in the Plan Area are currently wide enough to accommodate angled parking on both sides of the street. This can be accomplished simply through re-striping.

Although angled parking is a good option for the Plan Area, the phasing and location should be carefully considered. Angled parking can present a safety hazard when it comes to bicyclists because motorists have a limited field of vision when pulling out of angled parking spaces. Figure 3.14 shows existing bike lanes in the Plan Area, as well as existing angled parking and proposed phasing for new angled parking.

Phase I. Angled parking should first be added to both sides of Benito and Encinal Streets if demand calls for it. These streets are not the primary routes for bicyclists and so safety will not be a major concern.

Phase II. Only as demand requires, angled parking should be added to Monterey, East, West, and Soledad Streets. This should be done as a last resort, and other alternatives should be considered before these streets are striped for angled parking. These streets serve as key bicycle routes and placing angled parking may present a safety risk for bicyclists. Figure 3.17 illustrates how angled parking can be phased in as demand requires.

Long-Term. Over time, the City should consider back-in or reverse angle parking in Downtown. Back-in angle parking is similar to both parallel and standard (or pull-in) angle parking. Like parallel parking, a driver enters a stall by stopping and backing. When leaving the stall, the driver can simply pull out of the stall and has a better view of oncoming traffic (see Figure 3.15). This increased field of vision provides significant safety benefits for oncoming motorists and bicyclists. In addition, drivers and passengers are shielded from the street by the car door and can exit safely from the car to the sidewalk. The City should prioritize streets with existing bicycle facilities for implementation.

The following cities have installed back-in angle parking: Seattle (city-wide), Tacoma, Olympia, and Vancouver in Washington; Portland and Salem in Oregon; Tucson, Arizona; Austin, Texas; Salt Lake City; Indianapolis; Washington, D.C.; Pottstown, Pennsylvania; Wilmington, Delaware; and Montreal, Canada. The City of Tucson monitored data on bicycle/car collisions before and after installing back-in angle parking and found that collisions had dropped to zero during the first four years after installation as compared with three to four per month with conventional, pull-in angle parking.
Phase 1: Parallel parking and street trees on both sides of the street.

Phase 2: New multi-family residential development on the north side of the street, with dwellings entered directly from the street and from small entry courts between the buildings.

Phase 3: Angled parking on both sides of the street as demand increases from significant new development.
Bicycle Parking

Bicycle racks provide customers and visitors who arrive via bicycle with secure parking and encourage patronage at local businesses. Properly designed and installed racks prevent damage to street trees and furniture, keep bicycles from falling over and blocking the sidewalk, and help provide a more orderly appearance in front of buildings.

- Short-term bicycle parking racks within the public right-of-way and at the proposed Intermodal Station, would complement the current, well-developed network of bicycle lanes. Figure 3.16 provides an example of a bicycle rack that is functional but also provides visual interest.

- Long-term bicycle storage for tenants and residents within secure enclosures would encourage bicycle commuting as a regular form of everyday transportation.

Residential Parking

Residential Permit Programs (RPP) are one of the most effective tools at managing spillover into residential neighborhoods. RPPs operate by exempting permitted vehicles from the parking restrictions and time limits within a geographically defined area. Permit holders are able to park their vehicle on the street for several days or an unlimited time, although holding a permit does not guarantee the availability of a parking space.

RPPs work best and can protect residential neighborhoods that are impacted by spillover from other uses, particularly competing demand from employees at nearby businesses or at large institutions such as hospitals, schools, or colleges. RPPs are also commonly used in neighborhoods that are impacted by regional commuters who might want to drive and park in a neighborhood that has convenient access to a transit node, such as a rail station or major express bus line.

Residential Parking Benefit Districts (PBD) are similar to residential parking permit districts in that a certain number of parking permits are issued to residents, which allow them to park within the neighborhood. However, PBDs also allow a limited number of non-resident parkers to pay to use surplus on-street parking spaces in residential areas, and return the resulting revenues to the neighborhood to fund public improvements.

Currently, Downtown Soledad has a more than adequate supply of parking – the peak occupancy for on- and off-street parking is only 25 percent, meaning that even at the busiest times approximately 936 on- and off-street parking spaces are available. Nevertheless, a few localized parking challenges exist, as some businesses, land uses, and residential streets generate more parking demand than others. These localized inefficiencies can contribute to imbalances between supply and demand, as well as exacerbate the perception that “parking is a problem” in certain areas. Residents can become particularly impacted by spillover parking, especially if they live on a block that consistently has higher demand and they are unable to park close to their residences.

3.5 INFRASTRUCTURE

The California Government Code requires this Specific Plan to report, “The proposed distribution, location, extent, and intensity of major components of public and private sewage, water, drainage, solid waste disposal, energy, and other essential facilities proposed to be located within the area covered by the plan and needed to support the land uses described in the plan” (Section 65451).

As such, this Section reviews current service and potential impacts to infrastructure related to wastewater, drinking water, storm water drainage, solid waste disposal, energy, and other essential facilities proposed to be located within the area covered by the plan and needed to support the land uses described in the plan” (Section 65451).

Under current infrastructure improvement plans and impact fees generated from development over time, most of the Project Area’s infrastructure will remain adequate to meet potential build out without further investment. However, wastewater pipes, potable water pipes, schools, and emergency services may require additional funding to maintain adequate services at build out.

WASTEWATER

According to the 2010 Urban Water Management Plan (UWMP), the City completed an upgrade and expansion of the City’s wastewater treatment plant in 2010. The City Plant upgrade was designed to meet future population and industrial growth. While the City Plant has a treatment capacity of 5.5 million gallons per day (MGD), the current capacity is effectively limited to 4.3 MGD due to disposal capacity limitations. The City currently processes approximately 1.5 MGD, which is just over 35 percent of the plant’s effective capacity. The City Plant meets the waste discharge effluent limits requirement adopted by the State Water Resources Control Board of California, as well as Title 22 Recycled Water standards.
The City currently has wastewater pipes that are accessible to all parcels in the Plan Area, including lines through the railroad property, which will facilitate development in the area (see Figure 3.18). The sewage pipes in the Plan Area range from 6 inches to 15 inches. Although older, these sewage pipes will adequately handle an increase in wastewater as a result of development facilitated by this Specific Plan; it is unlikely that future development in the Plan Area will require additional wastewater infrastructure.

WATER SUPPLY

Potable water in the City comes from the Salinas Valley Groundwater Basin, which is divided into four subareas. The City is within the Forebay subarea. The City draws its water from an unconfined shallow aquifer zone in this subarea. The UWMP notes that there are currently no restrictions on how much water the City can extract, nor are any such restrictions expected. However, the UWMP also reports that the Salinas Valley Groundwater Basin currently has an overdraft of approximately four percent per year. This is expected to be remedied through increased conservation efforts and potentially a reduction in agricultural water use through urbanization of the Salinas Valley. Strategic releases of water from aquifers by the Monterey County Water Resources Agency at certain times in the year will also increase groundwater recharge. The UWMP identifies 148,000 acre-feet per year as a sustainable yield value for the Forebay Subarea.
The City operates a system of groundwater wells and distribution pipes to deliver water to end users. The City has four active wells, all of which treat the ground water with chlorine and then pump it into one of the City’s four 1,000,000-gallon tanks. The water is then pumped directly into the distribution system. The total capacity for all four wells is 5.9 MGD day or 4,100 gallons per minute. The City’s water distribution system consists of a network of pipes ranging from two inches in diameter to 16 inches in diameter with existing mains located throughout the Plan Area.

The UWMP also reports that in an effort to further reduce the amount of potable water needed, the City is actively pursuing funding to complete the infrastructure required to provide recycled water to existing residential, agricultural, and recreational uses. The use of recycled water through this “purple pipe” will be encouraged for outdoor water uses within new development. Under current plans, the Plan Area would have direct access to a recycled water main (see Figure 3.19 for the location of this line).

The City continues to make upgrades and expansions to its water delivery infrastructure to keep up with the increasing population. Section 4.4 of the UWMP describes current and future projects intended to maintain and expand infrastructure capabilities. Incremental increase in water demand as a result of this Specific Plan can be met through the City’s existing infrastructure plans and groundwater access. Figure 3.20 maps existing water supply in the City.

STORM WATER DRAINAGE

The City provides storm water disposal service within the City limits and is responsible for ensuring adequate construction and maintenance of storm drainage facilities. The City is divided into nine storm water drainage basins. Storm drainage generated within the City has typically been directed to either the Salinas River or the Bryant Canyon Channel for disposal. According to the City of Soledad Storm Water Management Plan (SWMP) (2010), the storm drainage system is composed of reinforced concrete pipe ranging in size from 8 to 60 inches.

The Plan Area is located within the Central Basin. West of West Street, storm water in the Plan Area flows to San Vincente Road, where it is then carried to a retention pond. Storm water between West Street and Oak Street in the Plan Area is collected in a 60 inch storm drain that discharges to a percolation field. Flows east of Oak Street in the Plan Area are collected in a 42 inch storm drain that enters the Caltrans culvert.
While development in the Plan Area would likely increase impermeable surfaces, existing capabilities as outlined in the SWMP would sufficiently handle additional drainage requirements.

SOLID WASTE

The City’s Solid Waste Operations (SWO) administers the City’s contract for garbage services with Tri-Cities Disposal (run by Monterey City Disposal Service, Inc.) under a Joint Powers Agreement with all the southern Monterey County cities. Garbage from the City is taken to the Salinas Valley Solid Waste Authority (SVSWA) landfill at Johnson Canyon outside of Gonzales. SVSWA provides service with rates based on quantity disposed and offers free recycling bins to all City residents and businesses. The Johnson Canyon Landfill is currently at 16 percent capacity and is estimated to be in operation through 2047 or 2052 (for the next 35 to 40 years. The Johnson Canyon landfill has sufficient capacity to handle increases in solid waste that may occur as a result of this Specific Plan.

ENERGY

Electricity and gas in the City are provided by Pacific Gas and Electric (PG&E). Increased development is not expected to have a significant impact on these utilities. The Specific Plan, however, provides the City with an opportunity to address above-ground power lines in the Plan Area. Power lines on Front Street between Benito Street and Oak Street are subterranean. The rest of the streets in the Plan Area have above-ground power lines. Policy 36 directs the City to apply for subterranean utility line grants, which will modernize City infrastructure, and improve aesthetics.

SCHOOLS

The City has four elementary schools, one middle school, and one high school. Younger children living within the Plan Area would likely attend Frank Ledesma or Gabilan Elementary School; Older children would attend Main Street Middle School or Soledad High School. Table 3.5 reports the current enrollment.

<table>
<thead>
<tr>
<th>TABLE 3.5 SCHOOL ENROLLMENT, CAPACITY AND UTILIZATION IN THE PLAN AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENROLLMENT</td>
</tr>
<tr>
<td>Frank Ledesma Elementary School</td>
</tr>
<tr>
<td>Gabilan Elementary School</td>
</tr>
<tr>
<td>Main Street Middle School</td>
</tr>
<tr>
<td>Soledad High School</td>
</tr>
</tbody>
</table>

EMERGENCY SERVICES

The City contracts with CAL Fire for fire protection services. The Fire Department is comprised of one part time Fire Chief, three Fire Captains, three Fire Engineers, two Firefighters, and 15 Volunteer Firefighters. The Fire Department responds to fires and provides rescue and emergency care services, as well as educational programs. The City’s goal is to have a response time of five minutes or less. The City’s fire station is located on 525 Monterey Street, in the center of the Plan Area. Given the station’s location, it is unlikely that development in the Plan Area as a result of this Specific Plan would require additional fire department resources. However, full build-out would generate approximately $840,000 in impact fees for the fire department.

The Police Department currently employs eight Patrol Officers, three Sergeants, three Field Training Officers, and one Animal Control Officer. The City aims to maintain a ratio of a minimum of one police officer per 1,000 residents. Full build out of the Specific Plan would likely require additional officers to maintain this standard. However, using the fee schedule from the Municipal Code, full buildout would generate $1,250,000 in impact fees and would generate additional sales tax to help fund these additions.